WEIGHTED JOIN-SEMILATTICES AND TRANSVERSAL MATROIDS

BY

RICHARD A. BRUALDI(1)

ABSTRACT. We investigate join-semilattices in which each element is assigned a nonnegative weight in a strictly increasing way. A join-subsemilattice of a Boolean lattice is weighted by cardinality, and we give a characterization of these in terms of the notion of a spread. The collection of flats with no coloops (isthmuses) of a matroid or pregeometry, partially ordered by set-theoretic inclusion, forms a join-semilattice which is weighted by rank. For transversal matroids these join-semilattices are isomorphic to join-subsemilattices of Boolean lattices. Using a previously obtained characterization of transversal matroids and results on weighted join-semilattices, we obtain another characterization of transversal matroids. The problem of constructing a transversal matroid whose join-semilattice of flats is isomorphic to a given join-subsemilattice of a Boolean lattice is then investigated.

1. Introduction. We are motivated by a recent study [3] of transversal matroids in which a characterization of transversal matroids is given in terms of the join-semilattice of flats with no coloops (isthmuses). The characterization depends on an algorithm used to construct a family of flats. We consider here the more general situation of a join-semilattice J in which each element has assigned to it a nonnegative weight where the only assumption is that weight is a strictly increasing function on J. We introduce the concept of a spread for such a weighted join-semilattice, show a spread is unique if it exists at all, and give a characterization of join-semilattices of a finite Boolean lattice which are weighted by cardinality. Making use of the characterization of transversal matroids given in [3], we then give an alternate characterization which has the advantage of not depending on an algorithm. Finally we consider the problem of constructing a transversal matroid such that its weighted join-semilattice of flats with no coloops is isomorphic to a given join-subsemilattice of a Boolean lattice.

A family of objects differs from a set in that the objects may be repeated. We use parentheses () to denote families and braces $\{\ \}$ to denote sets. If E is a

Received by the editors August 31, 1972.

AMS (MOS) subject classifications (1970). Primary 05B35, 06A20; Secondary 05A05. Key words and phrases. Weighted semilattice, spread, Boolean lattice, transversal matroid.

⁽¹⁾ Research partially supported by National Science Foundation Grant No. GP-17815.

set and $\mathfrak{A} = (a_i : i \in I)$ is a family of elements of E, then for $x \in E$ we define the multiplicity of x in \mathfrak{A} by

$$m(\mathfrak{A}, x) = |\{i \in I: a_i = x\}|.$$

This multiplicity may be 0. If \mathfrak{A}_1 , \mathfrak{A}_2 are two families of elements of E, we write $\mathfrak{A}_1 \leq \mathfrak{A}_2$ provided $m(\mathfrak{A}_1, x) \leq m(\mathfrak{A}_2, x)$ for all $x \in E$. We consider two families to be identical if $m(\mathfrak{A}_1, x) = m(\mathfrak{A}_2, x)$ for all $x \in E$. The cardinality $\|\mathfrak{A}\|$ of a family \mathfrak{A} is defined by $\|\mathfrak{A}\| = |I|$.

2. Weighted join-semilattices. A join-semilattice is a partially ordered set J such that each pair a, b of elements of J has a least upper bound, which is denoted by $a \lor b$. A nonempty collection of subsets of a set E which is closed under union is a join-semilattice; the partial order is set-theoretic inclusion. Such a join-semilattice is a join-subsemilattice of the Boolean lattice B(E) of all subsets of E. A finite join-semilattice has a maximal element which we usually denote by 1; it need not have a minimal element but, if it does, it is usually denoted by 0. It is well known that a finite join-semilattice with a minimal element is a lattice [1].

If P is a partially ordered set, then a mapping ω from P to the nonnegative integers is a weighting of P if a < b implies $\omega(a) < \omega(b)$ $(a, b \in P)$. A weighting of P need not be a grading [1] of P, for we do not assume that $\omega(b) = \omega(a) + 1$ if b covers a. If E is a set and P is a collection of subsets of E partially ordered by set-theoretic inclusion, then $\omega(A) = |A|$ defines a weighting of P. A partially ordered set with a specific weighting is called a weighted partially ordered set.

Let P be a weighted partially ordered set with a maximal element 1 and set $\omega(1) = r$. Thus any chain has length at most r. A spread of P is a family $\mathfrak{U} = (a_i : i \in I)$ of elements of P such that the following condition holds: if $x \in P$ with $\omega(x) = r - k$ $(0 \le k \le r)$, then

$$(2.0.1) |\{i \in I: a_i \geq x\}| = k.$$

In other words, exactly k members of \mathfrak{A} are greater than or equal to x if $\omega(x) = r - k$. If P has a minimal element 0, then clearly the cardinality $\|\mathfrak{A}\|$ of the spread \mathfrak{A} equals $r - \omega(0)$. Thus if $\omega(0) = 0$, a spread of P has exactly $r = \omega(1)$ elements. The notion of a spread arose in a characterization of transversal matroids [3], which will be fully explained in due course.

Theorem 2.1. If the weighted partially ordered set P with maximal element has a spread, the spread is unique.

Proof. Suppose $\mathfrak A$ is a spread of P, and let $\omega(1) = r$. Let $a \in P$ with $\omega(a) = r - k$. Then from (2.0.1) we conclude that the multiplicity of a in $\mathfrak A$ is given by

$$(2.1.1) m(\mathfrak{A}, a) = k - \sum_{x>a} m(\mathfrak{A}, x).$$

This implies, in particular, that $\sum_{x>a} m(\mathfrak{A}, x) \leq k$. The equation (2.1.1) along with $m(\mathfrak{A}, 1) = 0$ furnishes a recursion formula for the multiplicities of elements of P in \mathfrak{A} . Since these multiplicities are uniquely determined, so is the spread \mathfrak{A} .

The proof of Theorem 2.1 gives an algorithm for determining a spread if one exists. If there is no spread, then there is some element a of P with $\omega(a) = r - k$ such that $\sum_{x>a} m(\mathfrak{A}, x) > k$.

The next theorem furnishes examples of weighted partially ordered sets which have spreads. Theorem 2.3 will then show that these examples are not very special.

Theorem 2.2. Let J be a join-subsemilattice of the Boolean lattice on a set E with |E| = r. Suppose E is the maximal element of J, and let J be weighted by the cardinality function. Then

$$(2.2.1) J has a spread $\mathfrak{A}, and \|\mathfrak{A}\| = r - |\bigcap \{A: A \in J\}|.$$$

$$(2.2.2) m(\mathfrak{A}, A) = \left| \left(\bigcap X : A \subsetneq X \in J \right) \right| - |A| (A \in J).$$

Proof. The assumption that E is the maximal element of J is one of convenience. If this were not the case, E would be replaced by a smaller set.

Let $A \in J$ with |A| = r - k. We need to show that $m(\mathfrak{U}, A) = k - \sum_{A \subseteq X \in J} m(\mathfrak{U}, X)$ and $m(\mathfrak{U}, E) = 0$ allows us to define \mathfrak{U} recursively. This is surely true for k = 0 (that is, A = E). We proceed by induction on k. Let $A \in J$ with |A| = r - k. Let X_1, \dots, X_t be the members of J which strictly contain A. Thus $|X_i| = r - k_i$ where $k_i < k$ $(1 \le i \le t)$. Since J is a join-semilattice, $X_{i_1} \cup \dots \cup X_{i_s} \in J$ whenever $1 \le i_1 < \dots < i_s \le t$; let $|X_{i_1} \cup \dots \cup X_{i_s}| = r - k_{i_1 \cdots i_s}$ where $k_i \cap i_s < k$. Thus by induction the recursion has produced $k_i \cap i_s < k$ bers of \mathfrak{U} that contain $X_i \cup \dots \cup X_i$. Hence by the principle of inclusion-exclusion exactly

$$n = \sum_{1 \le i \le t} k_i - \sum_{1 \le i_1 \le i_2 \le t} k_{i_1 i_2} + \sum_{1 \le i_1 \le i_2 \le i_3 \le t} k_{i_1 i_2 i_3} - \cdots$$

members of $\mathfrak A$ that strictly contain A have been produced. But

$$n = \sum_{1 \le i \le t} |E \setminus X_i| - \sum_{1 \le i_1 \le i_2 \le t} |E \setminus (X_{i_1} \cup X_{i_2})|$$

$$+ \sum_{1 \le i_1 \le i_2 \le i_3 \le t} |E \setminus (X_{i_1} \cup X_{i_2} \cup X_{i_3})| - \cdots$$

$$= \left| \bigcup_{i=1}^t (E \setminus X_i) \right| = \left| E \setminus \bigcap_{i=1}^t X_i \right| = r - \left| \bigcap_{i=1}^t X_i \right|.$$

Since $A \subseteq X_i$ $(1 \le i \le t)$, $A \subseteq \bigcap_{i=1}^t X_i$ so that $|\bigcap_{i=1}^t X_i| \ge r - k$ and $n \le r - (r - k) = k$. Thus we can define $m(\mathfrak{A}, A)$ by $k - n \ge 0$. But $k - n = k - (r - |\bigcap_{i=1}^t X_i|) = |\bigcap_{i=1}^t X_i| - (r - k) = |\bigcap_{i=1}^k X_i| - |A|$. Thus we have proved that I has a spread and that (2.2.2) is satisfied.

We have yet to prove that $\|\mathfrak{A}\| = r - |\bigcap \{A : A \in J\}|$. This is surely true if $\emptyset \in J$. If $\emptyset \notin J$, then $J^* = J \cup \{\emptyset\}$ is a join-subsemilattice of the Boolean lattice on E and has a spread \mathfrak{A}^* where $\|\mathfrak{A}^*\| = r$. But

$$\|\mathfrak{A}\| = \|\mathfrak{A}^*\| - m(\mathfrak{A}^*, \phi) = r - \left| \left(\bigcap X \colon X \in J \right) \right|$$

according to (2.2.2), and this establishes the formula for $\|\mathfrak{U}\|$.

Corollary 2.3. If $\mathfrak{A} = (A_i : i \in I)$ is the spread of the join-subsemilattice J of the Boolean lattice on E, then for $A \in J$,

(2.3.1)
$$\left(\bigcap X: A \subsetneq X \in J\right) = \left(\bigcap A_i: A \subsetneq A_i, i \in I\right).$$

Proof. The set on the right side of (2.3.1) surely contains that on the left. Suppose now that $A \subsetneq X \in J$ but $X \neq A_i$ ($i \in I$). Then arguing by induction (|X| > |A|), and using (2.2.2) we conclude that

$$X = (\bigcap_{i} Y, X \subsetneq Y \in J) = (\bigcap_{i} A_{i}: X \subsetneq A_{i}, i \in I).$$

Thus if $A \subsetneq X \in J$, then either $X = A_i$ for some $i \in I$ or else there is $J \subseteq I$ such that $X = \bigcap_{i \in I} A_i$. Since $A \subsetneq X$, $A \subsetneq A_i$ ($i \in J$) and this establishes (2.3.1).

Consider the join-semilattice J of Theorem 2.2 and its spread $\mathfrak{A}=(A_i\colon i\in I)$. Let $A\in J$ and let \mathfrak{A}_A be the subfamily of \mathfrak{A} consisting of all members A_i of \mathfrak{A} with $A\subseteq A_i$. \mathfrak{A}_A is the spread of the interval [A,E] of J. Then for $A,B\in J,A\subseteq B$ if and only if $\mathfrak{A}_B\subseteq \mathfrak{A}_A$. For if $A\subseteq B$, then surely $\mathfrak{A}_B\subseteq \mathfrak{A}_A$. On the other hand if $\mathfrak{A}_B\subseteq \mathfrak{A}_A$, then $B\in \mathfrak{A}_B$ implies $B\in \mathfrak{A}_A$ so that $A\subseteq B$, while $B\notin \mathfrak{A}_B$ implies $B\notin \mathfrak{A}$ (i.e. $m(\mathfrak{A},B)=0$), which by (2.2.2) and (2.3.1) implies

$$B = \bigcap (A_i : A_i \in \mathfrak{U}_B) \supseteq \bigcap (A_i : A_i \in \mathfrak{U}_A) \supseteq A.$$

Thus $A \subseteq B$. Hence the partial order of J is determined by the partial order on the \mathfrak{U}_A $(A \in J)$.

If J_1 and J_2 are two join-semilattices, an injection $\sigma\colon J_1\to J_2$ is a semilattice monomorphism if $\sigma(a\vee b)=\sigma(a)\vee\sigma(b)$ for all $a,b\in J_1$. We shall be interested now in weighted semilattices which are isomorphic where the isomorphism preserves weights.

Theorem 2.4. Let J be a weighted join-semilattice with $\omega(1) = r$. Let E be a set with |E| = r. Then there is a semilattice monomorphism $\sigma: J \to B(E)$, the Boolean lattice on E, such that $\omega(a) = |\sigma(a)|$ for all $a \in J$ if and only if J has a spread of at most r elements.

Proof. By Theorem 2.2 if such a σ exists, J has a spread with at most r elements. Suppose now J has a spread $\mathfrak{A} = \{a_i \colon i \in I\}$ with $\|\mathfrak{A}\| = |I| \le r$. For $a \in J$, let $I_a = \{i \in I \colon a_i \ge a\}$. Thus if $\omega(a) = r - k$, $|I_a| = k$. We define a map $r \colon J \to B(I)$ by $r(a) = I \setminus I_a$. Thus for $a, b \in J$, $r(a \vee b) = I \setminus I_{a \vee b}$. But $I_{a \vee b} = I_a \cap I_b$; for if $a_i \ge a \vee b$, then $a_i \ge a$, b so that $I_{a \vee b} \subseteq I_a \cap I_b$ while if $a_i \in I_a \cap I_b$, then $a_i \ge a$, b and thus $a_i \ge a \vee b$ so that $I_a \cap I_b \subseteq I_{a \vee b}$. This means that

$$r(a \lor b) = I \setminus (I_a \cap I_b) = (I \setminus I_a) \cup (I \setminus I_b) = r(a) \cup r(b).$$

Suppose that for some $a, b \in J$ with $a \neq b$, we have $\tau(a) = \tau(b)$. We may suppose that $b \not < a$ so that $a \lor b > a$. Then, by the above, $\tau(a \lor b) = \tau(a) \cup \tau(b) = \tau(a)$. Thus $I_{a \lor b} = I_a$. But since $\omega(a \lor b) > \omega(a)$, $|I_{a \lor b}| < |I_a|$, and we have a contradiction. Thus τ is a semilattice monomorphism from J to B(I). We calculate that for $a \in I$

$$|\tau(a)| = |I| - |I_a| = |I| - (\tau - \omega(a)) = \omega(a) - (\tau - |I|),$$

where $r - |I| \ge 0$. Let t = r - |I| and let I^* be a t element set with $I \cap I^* = \emptyset$. Then $|I \cup I^*| = r$ and $\sigma: J \to B(I \cup I^*)$ defined by $\sigma(a) = r(a) \cup I^*$ is a semilattice isomorphism with $|\sigma(a)| = |r(a)| + t = \omega(a)$. This completes the proof of the theorem.

3. Application to transversal matroids. A characterization of transversal matroids is given by Brualdi and Dinolt [3]. We shall use the result of §2 to give an alternate formulation of it. But first we review briefly matroids, in general, and transversal matroids, in particular; for further details we refer the reader to [3] and the references contained within.

Let E be a finite set. A matroid [5] M on E (or combinatorial pregeometry [4]) is a nonempty collection of subsets of E, called independent sets such that

(i) a subset of an independent set is independent (thus $\emptyset \in M$) (ii) $A_1, A_2 \in M$ with $|A_1| < |A_2|$ imply $A_1 \cup \{x\} \in M$ for some $x \in A_2 \setminus A_1$. Each subset X of E has a well-defined rank $\rho(X)$ which equals the common cardinality of all maximal independent sets contained in X. The rank of the matroid M equals $\rho(E)$. For $X \subseteq E$, $M_X = \{A : A \in M, A \subseteq X\}$ is a matroid, called the restriction of M to A. A closure relation can be defined on the subsets of E by defining \overline{X} to be the largest subset of E containing X which has the same rank as X. Those subsets F of Ewith $\overline{F} = F$ are called *flats*. The collection $\mathfrak{L}(M)$ of flats of M, partially ordered by set-theoretic inclusion, form a geometric lattice [4]. If $X \subseteq E$, then $x \in X$ is a coloop or isthmus of X if $\rho(X \setminus \{x\}) = \rho(X) - 1$. The collection $\mathcal{F}(M)$ of flats of M which have no coloops forms a join-subsemilattice of $\mathfrak{L}(M)$. Given a pair F_1 , F_2 of flats in $\mathcal{F}(M)$ with $F_1 \subseteq F_2$, such that no other flat of $\mathcal{F}(M)$ lies between F_1 and F_2 , then the interval $[F_1, F_2]$ of $\mathcal{Q}(M)$ consists of all sets of the form $F_1 \cup A$ where $A \subseteq F_2 \setminus F_1$, $|A| \le \rho(F_2) - \rho(F_1) - 1$, along with F_2 . Thus the flats of $\mathcal{F}(M)$, given as subsets of E with their rank, determine all flats of $\mathfrak{L}(M)$ as sets and thus the partial order of $\mathfrak{L}(M)$; that is, they determine the lattice L(M).

A matroid M on E is a transversal matroid provided there is a family (A_1, \dots, A_n) of subsets of E such that $M = M(A_1, \dots, A_n)$, the collection of partial transversals of (A_1, \dots, A_n) . If M is a transversal matroid of rank r, then there are r sets A_1, \dots, A_r such that $M = M(A_1, \dots, A_r)$. The family (A_1, \dots, A_r) is called a presentation of M. We recall Hall's theorem which says that the family (A_1, \dots, A_r) has a transversal (thus a system of distinct representatives) if and only if

$$\left|\bigcup_{i\in K}A_i\right|\geq |K| \qquad (K\subseteq\{1,\,\cdots,\,r\}).$$

Now let M be an arbitrary matroid of rank r on the finite set E. We regard the join-semilattice $\mathcal{F}(M)$ as a weighted join-semilattice by letting $\omega(F) = \rho(F)$ for $F \in \mathcal{F}(M)$. The unique flat in $\mathcal{F}(M)$ of weight 0 is the closure of the empty set. In the terminology of §2 the characterization of transversal matroids given in [3] is the following: M is a transversal matroid if and only if $\mathcal{F}(M)$ has a spread (F_1, \dots, F_r) where $\rho(\bigcap_{i \in K} F_i) \leq r - |K|$ $(K \subseteq \{1, \dots, r\})$. It is also proved in [3] that if M is a transversal matroid, then $M = M(E \setminus F_1, \dots, E \setminus F_r)$; indeed $(E \setminus F_1, \dots, E \setminus F_r)$ is the maximal presentation of M. This means that we cannot enlarge any of the sets $E \setminus F_1, \dots, E \setminus F_r$ and still have a presentation of M. It is enough to know that the sets F_1, \dots, F_r have no coloops, in order to conclude that $(E \setminus F_1, \dots, E \setminus F_r)$ is the maximal presentation of M ([1] and [3]).

If G_1 , G_2 are flats in $\mathfrak{L}(M)$ with $G_1 \subseteq G_2$, then $\mathfrak{F}(M)_{[G_1,G_2]}$ denotes the join-subsemilattice of $\mathfrak{L}(M)$ consisting of all flats of $\mathfrak{L}(M)$ with no coloops which lie in the interval $[G_1,G_2]$ of $\mathfrak{L}(M)$. Note that $\mathfrak{F}(M)=\mathfrak{F}(M)_{[\mathscr{O},E]}$, and that $\mathfrak{F}(M)_{[G_1,G_2]}$ is a join-subsemilattice of $\mathfrak{F}(M)$. We regard $\mathfrak{F}(M)_{[G_1,G_2]}$ as weighted by rank (or we could assign $F \in \mathfrak{F}(M)_{[G_1,G_2]}$ the weight $\rho(F)-\rho(G_2)$).

Theorem 3.1. Let M be a matroid of rank r on the finite set E. Then M is a transversal matroid if and only if for all G_1 , $G_2 \in \mathfrak{L}(M)$ with $G_1 \subseteq G_2$ the weighted join-semilattice $\mathfrak{F}(M)_{[G_1,G_2]}$ has a spread of at most $\rho(G_2)-\rho(G_1)$ members or, equivalently, there is a weight-preserving join-semilattice isomorphism from $\mathfrak{F}(M)_{[G_1,G_2]}$ to a Boolean lattice on an $\rho(G_2)-\rho(G_1)$ element set.

Proof. By Theorem 2.4 the two criteria are equivalent. Suppose first that M is a transversal matroid of rank r. Then $\mathcal{F}(M)$ has a spread (F_1, \dots, F_r) . Let $G \in \mathcal{Q}(M)$ with $\rho(G) = r - k$. Then those members of (F_1, \dots, F_r) which contain G are the members of a spread of $\mathcal{F}(M)_{[G,E]}$. Let this spread be $(F_k: k \in K)$ where $K \subseteq \{1, \dots, r\}$. Since $\rho(\bigcap_{i \in K} F_i) \le r - |K|$ and since $G \subseteq \bigcap_{i \in K} F_i$ we have $\rho(G) = r - k \le \rho(\bigcap_{i \in K} F_i)$, and we conclude that $|K| \le k$. Thus $\mathcal{F}(M)_{[G,E]}$ has a spread of at most k members where $k = \rho(E) - \rho(G)$. Since M_{G_2} is a transversal matroid of rank $\rho(G_2)$ on G_2 and $\mathcal{F}(M)_{[G_1,G_2]}$ is isomorphic to $\mathcal{F}(M_{G_2})_{[G_1,G_2]}$, we conclude that $\mathcal{F}(M)_{[G_1,G_2]}$ has a spread of at most $\rho(G_2) - \rho(G_1)$ members for any G_1 , $G_2 \in \mathcal{Q}(M)$ with $G_1 \subseteq G_2$.

Suppose now M is a matroid of rank r such that for all $G \in \mathcal{L}(M)$, $\mathcal{F}(M)_{[G,E]}$ has a spread of at most $r - \rho(G)$ members. Thus, in particular, $\mathcal{F}(M)$ has a spread (F_1, \dots, F_r) with r members. Suppose for some $K \subseteq \{1, \dots, r\}$, $\rho(\bigcap_{i \in K} F_i) > r - |K|$. Let $G = \bigcap_{i \in k} F_i$. Then $\mathcal{F}(M)_{[G,E]}$ has a spread with at most $r - \rho(G)$ members. But a spread of $\mathcal{F}(M)_{[G,E]}$ consists of all members of the spread of $\mathcal{F}(M)$ which contain G; thus F_i ($i \in K$) are members of the spread of $\mathcal{F}(M)_{[G,E]}$. We conclude that $|K| \le r - \rho(G)$ or $\rho(G) \le r - |K|$, and this is a contradiction. Hence $\rho(\bigcap_{i \in K} F_i) \le r - |K|$ ($K \subseteq \{1, \dots, r\}$) and M is a transversal matroid.

We mention one application to an interesting class of matroids. Let E be a set and $\{X_i\colon 1\le i\le k\}$ a collection of subsets of E such that (i) $|X_i|\ge r-1$ ($1\le i\le k$) and (ii) every r-1 element subset of E is a subset of exactly one of X_1,\cdots,X_k . Then [4] the set E, the X_i ($1\le i\le k$), and all subsets A of E with $|A|\le r-2$ are the flats of a geometry (therefore matroid M) on E of rank r. Such a geometry is called a Hartmanis geometry [4]. In this case $\mathcal{F}(M)$ consists of those X_i with $|X_i|\ge r$ (these are flats of rank r-1), \emptyset , and possibly E. Thus $\mathcal{F}(M)$ has a

spread if and only if $|J| \le r$ where $J = \{i: 1 \le i \le k, |X_i| \ge r\}$. The spread is then $(X_i: i \in J)$ along with the \emptyset with the correct multiplicity to give r sets in total.

Theorem 3.2. The Hartmanis geometry M is a transversal geometry if and only if $|\bigcap_{i \in I} X_i| \le r - |I|$ $(I \subseteq J, |I| \ge 2)$.

If
$$I \subseteq J$$
, $|I| \ge 2$, then $\rho(\bigcap_{i \in I} X_i) = |\bigcap_{i \in I} X_i|$.

4. Construction of transversal matroids. Let M be a transversal matroid of rank r on a finite set E, and let $\mathcal{F}(M)$ be the join-semilattice of flats with no coloops, weighted by rank. Then we know there is a join-subsemilattice J of the Boolean lattice on an r element set such that $\mathcal{F}(M)$ and J are isomorphic as weighted join-semilattices. Since $\mathcal{F}(M)$ has a minimal element $\overline{\phi}$, $\mathcal{F}(M)$ is a lattice. (Note, however, $\mathcal{F}(M)$ is not in general a sublattice of $\mathcal{L}(M)$; it is, however, a join-subsemilattice of $\mathcal{L}(M)$.) We consider the following question. Suppose J is a join-subsemilattice with minimal element of the Boolean lattice on an r element set, weighted by cardinality. Is there a transversal matroid M of rank r such that $\mathcal{F}(M)$ and J are isomorphic as weighted join-semilattices?

Theorem 4.1. Let J be a join-subsemilattice of a Boolean lattice on an r element set, weighted by cardinality, such that $0, 1 \in J$ with $\omega(0) = 0$, $\omega(1) = r$. Then there is a transversal matroid M of rank r on a finite set E such that $\mathcal{F}(M)$ and J are isomorphic as weighted partially ordered sets; that is, there is a bijection $\sigma: J \to \mathcal{F}(M)$ such that

$$(4.1.1) a < b if and only if $\sigma(a) < \sigma(b) (a, b \in J),$$$

$$(4.1.2) |a| = |\omega(\sigma(a))| (a \in I).$$

We shall devote the remainder of this section to proving this theorem. The proof will be divided into several parts, but first we need a construction.

Let E' be some sufficiently large set. Corresponding to each $a \in J$ we define a subset F_a of E' as follows:

- (0) $F_0 = \emptyset$.
- (1) If $a \in J$ with $\omega(a) = 1$, choose distinct elements x, y of E' and set $F_a = \{x, y\}$. We do this for each $a \in J$ of weight 1 in such a way that all elements chosen are distinct: $F_a \cap F_b = \emptyset$ if a, $b \in J$, $\omega(a) = \omega(b) = 1$, $a \neq b$.
- (k) If $a \in J$ with $\omega(a) = k$, let $J_a = \{x \in J : x < a\}$. For each $x \in J_a$, $\omega(x) < k$. If $a = \bigvee \{x : x \in J_a\}$, set $F_a = \bigcup \{F_x : x \in J_a\}$. If $\bigvee \{x \in J_a\} = b < a$ and $\omega(b) = l < k$, then choose a subset X_a of E' with $|X_a| = k l + 1$ where the elements of X_a are different from any chosen previously. Then set $F_a = F_b \cup X_a$. We do

this for each element of J of weight k in such a way that $X_{a_1} \cap X_{a_2} = \emptyset$ whenever $\omega(a_1) = \omega(a_2) = k$ and $a_1 \neq a_2$.

The construction ends after we have gone through all elements of J. The family of sets $\mathcal{F} = (F_a : a \in J)$ obtained is partially ordered by set-theoretic inclusion. Let $E = \bigcup_{a \in J} F_a$.

(4.1.3)
$$a \le b$$
 if and only if $F_a \subseteq F_b$ $(a, b \in J)$.

Thus $a \neq b$ implies $F_a \neq F_b$, and the partially ordered sets \mathcal{F} and J are isomorphic.

By construction it is clear that if $a \le b$ then $F_a \subseteq F_b$. We need to prove conversely that $F_a \subseteq F_b$ implies $a \le b$, and we do this by induction on weight. It is certainly true by construction if a and b have weight at most 1. Let k > 1 and assume that $F_a \subseteq F_b$ implies $a \le b$ if $\omega(a) < k$, $\omega(b) < k$. Now consider a, $b \in J$ with $\omega(a) \le k$, $\omega(b) \le k$. We may assume by the induction that one of the latter is an equality.

We first make the following observation. For $x \in E$ let $\beta(x)$ be the element of J such that $x \in X_{\beta(x)}$. Thus in the construction x makes its first appearance in the set $F_{\beta(x)}$. It then follows for $x \in E$ and $c \in J$ that $\beta(x) \le c$ if and only if $x \in F_c$.

Now if $a \neq \bigvee_{x < a} x$, then $X_a \neq \emptyset$. Let $z \in X_a$. Since $F_a \subseteq F_b$, $z \in F_b$; hence $a = \beta(z) \leq b$. Thus we may assume $a = \bigvee_{x < a} x$. Let $p = \bigvee_{z \in F_a} \beta(z)$. Thus $F_p = F_a$. Since $z \in F_a$ also implies $z \in F_b$, $\beta(z) \leq a$, b for $z \in F_a$ and hence $p \leq a \land b$. If p = a, then $a \leq b$. If p < a, then consider $x \in J$ with x < a. We have $F_x \subseteq F_b$. Since $\omega(x)$, $\omega(p) < \omega(a) = k$, we have by induction that $x \leq p$. Hence $a = \bigvee_{x < a} x \leq p$. Since $p \leq a$, this implies a = p, a contradiction. Thus a = p and a < b.

(4.1.4) The meet operation in the lattice ${\mathfrak F}$ is set-theoretic intersection.

Let $a, b \in J$ and $c = a \land b$, so that $F_c = F_a \land F_b$. Then $F_c \subseteq F_a \cap F_b$. Suppose there were an $x \in (F_a \cap F_b) \backslash F_c$; thus $\beta(x) \le a$, b so that $\beta(x) \le a \land b = c$. This means $x \in F_c$, which is a contradiction.

We let the isomorphism $\sigma: J \to \mathcal{F}$ where $\sigma(a) = F_a$ carry over the weight function of J to \mathcal{F} . That is, we define $\omega(F_a) = \omega(a)$ ($a \in J$). Since J is a join-subsemilattice of the Boolean lattice of an r element set with 0 and 1, weighted by cardinality, J has a spread ($a_i: 1 \le i \le r$). Thus $(F_a: 1 \le i \le r)$ is the spread of \mathcal{F} . Consider the transversal matroid $M = M(E \setminus F_a)$, \cdots , $E \setminus F_a$. We have several things to verify concerning \mathcal{F} and the matroid M.

(4.1.5) If
$$a > b$$
, then $|F_a \setminus F_b| \ge \omega(a) - \omega(b) + 1 \ge 2$.

To prove this we apply induction to $\omega(a)$. If $\omega(a)=1$ then $\omega(b)=0$ and by construction $F_b=\emptyset$, $|F_a|\geq 2$. Thus assume $\omega(a)=k$ and that the result holds when the weight is less than k. If there is $c\in J$ such that a>c>b, then by induction $|F_c\setminus F_b|\geq \omega(c)-\omega(b)+1$. Thus if $|F_a\setminus F_c|\geq \omega(a)-\omega(c)+1$ then $|F_a\setminus F_b|\geq \omega(a)-\omega(b)+2$. Thus we might as well assume that there is no such c. If x<a implies $x\leq b$, then $\bigvee\{x\colon x< a\}\leq b$. Thus by construction $|F_a\setminus F_b|=\omega(a)-\omega(b)+1$. Otherwise there is an x< a such that $x\not\leq b$. Then $\omega(x\wedge b)<\omega(x)< k$ so that by induction $A=F_x\setminus F_{x\wedge b}=F_x\setminus (F_x\cap F_b)$ has cardinality at least $\omega(x)-\omega(x\wedge b)+1$. But since J is a join-subsemilattice of a Boolean lattice and weighted by cardinality, $\omega(x\vee b)+\omega(x\wedge b)\leq \omega(x)+\omega(b)$. Since $b< x\vee b\leq a$, we have $a=x\vee b$. Thus $\omega(a)-\omega(b)\leq \omega(x)-\omega(x\wedge b)$. Since $A\subseteq F_a\setminus F_b$ and $|A|\geq \omega(a)-\omega(b)+1$, we are done.

(4.1.6) The family
$$(E \setminus F_{a_1}, \dots, E \setminus F_{a_n})$$
 has a transversal.

We need to show that the condition for the existence of a transversal is satisfied here. We calculate that for $\emptyset \neq K \subseteq \{1, \dots, r\}$

$$\left| \bigcup_{i \in K} E \setminus F_{a_i} \right| = \left| E \setminus \bigcap_{i \in K} F_{a_i} \right| = \left| E \right| - \left| F_z \right|$$

where $z = \bigwedge \{a_i : i \in K\}$. But since $(a_i : 1 \le i \le r)$ is a spread of J, $\omega(\bigwedge_{i \in K} a_i) \le r - |K|$; otherwise we contradict the definition of a spread. Thus $\omega(z) \le r - |K|$. If we apply (4.1.5) with a = 1 (F, E) and b = z, we have

$$|E \setminus F_x| \ge r - \omega(z) + 1 \ge r - (r - |K|) + 1 = |K| + 1.$$

Thus we have a transversal.

(4.1.7) For
$$a \in J$$
, F_a is a flat of M.

Let $\omega(a) = r - k$. Then exactly k members of the spread $(a_i : 1 \le i \le r)$, say a_1, \dots, a_k , satisfy $a_i \ge a$ $(i = 1, \dots, k)$ and $a = \bigwedge (a_i : 1 \le i \le k)$. Since \mathcal{F} is lattice isomorphic to J via $\sigma(a) = F_a$, $F_a = \bigcap (F_{a_i} : 1 \le i \le k)$. Thus

$$F_a \cap (E \setminus F_{a_i}) = \emptyset$$
 $(1 \le i \le k)$.

Now let $x \in E \setminus F_a$. Thus $x \in \bigcup_{i=1}^k (E \setminus F_{a_i})$. If B is a maximum partial transversal contained in F_a (thus the rank of F_a in M is |B|), then $B \cup x$ is also a partial transversal. Thus F is closed and therefore a flat of M.

(4.1.8) If $a \in J$ has weight r - k, then the flat F_a of M has rank equal to r - k. Thus the rank function coincides with the weight function on \mathcal{F} .

Since $\omega(a) = r - k$, there are exactly k members of $(a_i : 1 \le i \le r)$, say a_1 , \cdots , a_k , which are greater than or equal to a. Thus $F_a \subseteq F_{a_i}$ $(1 \le i \le k)$. Consider the family $((E \setminus F_{a_i}) \cap F_a : k+1 \le i \le r)$ of subsets of F_a . We show that this family has a transversal which will prove $\rho(F) = r - k$. Let $K \subseteq \{k+1, \dots, r\}$. Then

$$\left|\bigcup_{i\in K} (E\backslash F_{a_i}) \cap F_a\right| = \left|\left(E\backslash\bigcap_{i\in K} F_{a_i}\right) \cap F_a\right| = \left|F_a\backslash\bigcap_{i\in K} \left(F_{a_i} \cap F_a\right)\right|.$$

Let $\bigcap_{i \in K} F_{a_i} \cap F_a = F_b$. Since $F_a = \bigcap_{i=1}^k F_{a_i}$, at least k + |K| members of the spread $(F_{a_i}: 1 \le i \le r)$ of \mathcal{F} contain F_b . Thus $\omega(F_b) \le r - (k + |K|)$, and so by (4.1.5)

$$|F_a \setminus F_b| \ge \omega(a) - \omega(b) + 1 \ge r - k - (r - (k + |K|)) + 1 = |K| + 1.$$

Thus the defined family has a transversal, which proves the statements made.

(4.1.9) For
$$a \in J$$
, the flat F_a of M has no coloops.

We prove this by induction on $\rho(F_a) = \omega(F_a)$. If $\rho(F_a) = 0$ or 1, this is true by construction. Let $\rho(F_a) = k > 1$, and assume the result is true for rank smaller than k. Suppose first $a = \bigvee_{x < a} x$. Then $F_a = \bigvee_{x < a} F_x$ and by induction each F_x is a flat of M with no coloops. Since the join of flats with no coloops of a matroid has no coloops, this proves F_a has no coloops. Suppose now $\bigvee_{x < a} x = b < a$ and thus $\rho(F_b) < k$. Since by induction F_b has no coloops, no element of F_b can be a coloop of F_a . But $F_a = F_b \cup X_a$ where $|X_a| = \rho(F_a) - \rho(F_b) + 1$. Thus if B is a maximal independent set of M contained in F_b , then $B \cup (X_a \setminus x)$ is a maximal independent set contained in F_a . Thus no element of X_a is a coloop of F_a , and F_a has no coloops.

Finally we show

(4.1.10) If F is a flat of M with no coloops, then $F = F_a$ for some $a \in J$.

Consider a flat F of M with no coloops and let $\rho(F) = r - k$. Since $M = M(E \setminus F_{a_1}, \dots, E \setminus F_{a_r})$ where F_{a_i} is a flat with no coloops of M $(1 \le i \le r)$, then $(E \setminus F_{a_1}, \dots, E \setminus F_{a_r})$ is the maximal presentation of M. Thus $(F_{a_1}, \dots, F_{a_r})$ is the spread of $\mathcal{F}(M)$ (recall it was defined to be the spread of $\mathcal{F}(M)$). Thus since $\rho(F) = r - k$ there are exactly k members of $(F_{a_1}, \dots, F_{a_r})$, say F_{a_1}, \dots, F_{a_r}

which contain F. Thus $F = \bigcap_{i=1}^k F_{a_i}$. But by (4.1.4) $\bigcap_{i=1}^k F_{a_i} = F_b$ for some $b \in J$. Thus $F = F_b$.

This now completes the proof of Theorem 4.1.

REFERENCES

- 1. G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638.
- 2. J. A. Bondy and D. J. A. Welsh, Some results on transversal matroids and constructions for identically self-dual matroids, Quart. J. Math. Oxford Ser. (2) 22 (1971), 435-451. MR 44 #3899.
- 3. R. A. Brualdi and G. W. Dinolt, Characterizations of transversal matroids and their presentations, J. Combinatorial Theory 12 (1972), 268-286.
- 4. H. Crapo and G. C. Rota, On the foundations of combinatorial theory: Combinatorial geometries, Preliminary edition, M. I. T. Press, Cambridge, Mass., 1970. MR 45 #74.
- 5. H. Whitney, On the abstract properties of linear dependence, Amer. J. Math. 57 (1935), 509-533.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706